Confident Interpretation of Bayesian Decision Tree Ensembles for Clinical Applications

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Predicting Twist Condition by Bayesian Classification and Decision Tree Techniques

Railway infrastructures are among the most important national assets of countries. Most of the annual budget of infrastructure managers are spent on repairing, improving and maintaining railways. The best repair method should consider all economic and technical aspects of the problem. In recent years, data analysis of maintenance records has contributed significantly for minimizing the costs. B...

متن کامل

Experimental Comparison of Classification Uncertainty for Randomised and Bayesian Decision Tree Ensembles

In this paper we experimentally compare the classification uncertainty of the randomised Decision Tree (DT) ensemble technique and the Bayesian DT technique with a restarting strategy on a synthetic dataset as well as on some datasets commonly used in the machine learning community. For quantitative evaluation of classification uncertainty, we use an Uncertainty Envelope dealing with the class ...

متن کامل

Bayesian Decision Tree Averaging for the Probabilistic Interpretation of Solar Flare Occurrences

Bayesian averaging over Decision Trees (DTs) allows the class posterior probabilities to be estimated, while the DT models are understandable for domain experts. The use of Markov Chain Monte Carlo (MCMC) technique of stochastic approximation makes the Bayesian DT averaging feasible. In this paper we describe a new Bayesian MCMC technique exploiting a sweeping strategy allowing the posterior di...

متن کامل

Comparison of the Bayesian and Randomised Decision Tree Ensembles within an Uncertainty Envelope Technique

Multiple Classifier Systems (MCSs) allow evaluation of the uncertainty of classification outcomes that is of crucial importance for safety critical applications. The uncertainty of classification is determined by a trade-off between the amount of data available for training, the classifier diversity and the required performance. The interpretability of MCSs can also give useful information for ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Transactions on Information Technology in Biomedicine

سال: 2007

ISSN: 1089-7771

DOI: 10.1109/titb.2006.880553